

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            
  
Welcome to GeoJS’s documentation!

GeoJS is a flexible library for all kinds of geospatial visualizations
from traditional point markers to 3D climatological simulations.  It is
designed for displaying large datasets (over 100,000 points) leveraging
the power of WebGL.  The programming interface was inspired by the widely
used d3 [http://d3js.org/] and allows the user to generate features from
arbitrary data objects with custom accessors.  The API also provides
custom mouse events that mimick browser level events, but work with
WebGL features and even through active layers.

See the growing list of examples [http://opengeoscience.github.io/geojs/examples/index.html]
for a live demonstration of GeoJS’s features or go to our Github
repository [https://github.com/OpenGeoscience/geojs] to start hacking.
GeoJS is in active development and many components are still being refactored
in preparation for a stable release.
If you have any questions or comments, feel free to join us on our
mailing list [http://public.kitware.com/mailman/listinfo/geojs-users].



	Quick start guide
	Build dependencies

	Getting the source code

	Building the source

	Using the library





	User’s guide
	Dependencies

	Software conventions

	Class overview

	Coordinate systems

	Coordinate transformation methods





	Developer’s guide
	Code quality tests

	Headless browser testing

	Selenium testing

	Code coverage





	Testing infrastructure
	selenium_test

	midas_handler

	upload_test_cases










Indices and tables


	Index

	Search Page









          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            
  
Quick start guide


Build dependencies

The following software is required to build geojs from source:


	Git [http://git-scm.com/]

	Node.js [http://nodejs.org/]



In addition, the following python modules are recommended for development
and testing of geojs.


	Python 2.7 [http://www.python.org/]

	Make [http://www.gnu.org/software/make/]

	CMake [http://www.cmake.org/]

	Pillow [http://pillow.readthedocs.org/en/latest/]

	Requests [http://docs.python-requests.org/en/latest/]

	Selenium [http://docs.seleniumhq.org/]






Getting the source code

Get the latest geojs source code from our GitHub repository [https://github.com/OpenGeoscience/geojs]
by issue this command in your terminal.

git clone https://github.com/OpenGeoscience/geojs.git





This will put all of the source code in a new directory called
geojs.  The GeoJS library is packaged together with another
library vgl [https://github.com/OpenGeoscience/vgl].  Formally, this library was included as a git
submodule.  Currently, vgl is downloaded from npm to integrate
better with workflows used by web projects.




Building the source

Inside the new geojs directory, you can simply run the following commands to
install all dependent javascript libraries and bundle together everything that
is needed.

npm install
npm run build





Compiled javascript libraries will be named geo.min.js and geo.ext.min.js in dist/built.
The first file contains geojs and vgl bundled together with a number of dependent libraries.
The second file contains d3.  The bundled libraries are minified, but source maps are provided




Using the library

The following html gives an example of including all of the necessary files
and creating a basic full map using the osmLayer class.

<head>
    <script charset="UTF-8" src="/built/geo.ext.min.js"></script>
    <script src="/built/geo.min.js"></script>

    <style>
        html, body, #map {
            margin: 0;
            width: 100%;
            height: 100%;
            overflow: hidden;
        }
    </style>

    <script>
    $(function () {
        geo.map({'node': '#map'}).createLayer('osm');
    });
    </script>
</head>
<body>
    <div id="map"></div>
</body>





You can save this page into a new file at dist/mymap.html.  To view your new creation,
start up a web server with the command

npm run examples





Now, if you open up http://localhost:8082/mymap.html in your favorite webgl enabled
browser, you should see a map like the following:

[image: _images/osmmap.png]
Additionally, you will be able to see all of the built-in examples at
http://localhost:8082/examples with the example server running.







          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            
  
User’s guide


Dependencies

GeoJS depends on several Javascript libraries that must be loaded
prior to use as well as a few recommended libraries for optional
features.  As a convenience, we provide a bundle containing all
required and optional dependencies in a single minified file.
This bundle is built as dist/built/geo.ext.min.js.  If you
are just building a simple page out of GeoJS like in the
quick start guide, this will probably
work well; however, when using GeoJS as part of an application,
you may need to customize the loading order or versions of the
bundled applications.  In this case, you may need to include the
sources manually or bundle them yourself.  The following is a
list of libraries used by GeoJS.


Internally bundled GeoJS dependencies
  
    
    
    Developer’s guide
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            
  
Developer’s guide


Note

This guide assumes you have cloned and built the geojs repository
according to the Quick start guide.



The selenium testing infrastructure of Geojs is run via CTest, it assumes
that the testing “server” is started prior to execution.  To start the
server, just run

npm run start-test





This will start a server on the default port of 30100.  The port
and selenium host names are configurable with cmake.  For example inside
the Kitware firewall, you can run the following to test on the selenium
node on garant

cmake -DSELENIUM_TESTS=ON -DSELENIUM_HOST=garant /path/to/geojs
make
ctest -VV





You may need to also set the variable TESTING_HOST to your computer’s
IP address reachable by the selenium node.


Note

Typically, CMake is used to build outside of the source tree.  This
means you would create a new directory somewhare and point cmake
to the geojs source directory.  You may need to rerun cmake and
make after making changes to your code for everything to
build correctly.  Try running ccmake /path/to/geojs for a full
list of configuration options.



Geojs employs several different frameworks for unit testing.  These
frameworks have been designed to make it easy for developers to
add more tests as new features are added to the api.


Code quality tests

All javascript source files included in the library for deployment are
checked against ESLint [http://eslint.org/] for uniform styling
and strict for common errors patterns.  The style rules for geojs are
located in the .eslintrc file in the root of the repository.  These
tests are preformed automatically for every file added to the build; no
additional configuration is required.  You can run a quick check of the
code style outside of CMake by running npm run lint.




Headless browser testing

Geojs uses PhantomJS [http://phantomjs.org/] for headless browser
testing of core utilities.  Unfortunately because PhantomJS does not
support webgl at this time, so code paths requiring gl must be either
mocked or run via selenium.

The headless unit tests should be placed in the tests/cases/
directory.  All javascript files in this directory will be detected
by the Karma [http://karma-runner.github.io/0.13/index.html] test
runner and executed automatically when you run npm run test.  It
is possible to debug these tests in a normal browser as well.  Just run
npm run start and browse to http://localhost:9876/debug.html.  The
test runner will automatically rebuild the tests as you modify files
so there is no need to rerun this command unless you add a new file.

There are a number of utilities present in the file tests/test-utils.js
that developers can use to make better unit tests.  For example, a mocked
vgl renderer can be used to hit code paths within gl rendered layers.  There
are also methods for mocking global methods like requestAnimationFrame
to test complex, asynchronous code paths in a stable and repeatable manner.
The Sinon [http://sinonjs.org/] testing library is also available to
generate stubs, spies, and mocked methods.  Because all tests share
a global scope, they should be careful to clean up all mocking and
instrumentation after running.  Ideally, each test should be runnable
independently and use jasmines beforeEach and afterEach methods
for setup and tear down.




Selenium testing

Most tests for geojs require a full browser with webgl support.
For these test, a framework based on Selenium [http://docs.seleniumhq.org/]
is provided.  This test framework is intentionally lightweight to allow
for many different kinds of testing from simple Jasmine style unit tests
to complicated mouse interactions with screenshot comparisons.

All selenium based tests should be placed inside subdirectories of
testing/test-cases/selenium-tests.  All subdirectories are assumed
to be selenium tests by CMake and will be instrumented and run accordingly.
Each subdirectory should, at a minimum, contain the following three files,
which may be empty:


	include.css: CSS that will be concatenated into a style node
in the head.

	include.html: HTML that will be concatenated into the body.

	include.js: Javascript source that will be concatenated into a script
node in the head after the inclusion of the geojs source and all dependent
libraries.



Generally, developers are free to put arbitrary content into these files; however,
one convention must be followed for the default instrumentation to work correctly.
The javascript source should be wrapped in a global function called startTest.
This function will be called automatically by the testing framework after all of
the instrumentation is in place and the page is loaded.  The startTest function will
be called with function as an argument that should be called when page is ready to
run the unit tests.  This is provided as a convenience for the default behavior
of selenium_test.BaseTest.wait() with no arguments.  Developers can
extend this behavior as necessary to provide more complicated use cases.  As an
example, see the d3Animation test case which sets a custom variable in a callback
script for a test that is run asynchronously.

The compiled version of these
tests are placed inside the deployment root so the users can manually see the test
results.  The path to each test is derived from the relative path inside
testing/test-cases/selenium-tests/.  For example, the test page in
testing/test-cases/selenium-tests/osmLayer/ is available at
http://localhost:30100/test/selenium/osmLayer/ after starting the test web server.

The unit tests themselves are derived from Python’s
unittest [https://docs.python.org/2/library/unittest.html] module via a customized
subclass selenium_test.BaseTest.  Detailed documentation of the methods
this class provides is given in the next section.  Developers should feel free to
extend this class with any generally useful methods as they become necessary for
a wider variety test cases.


Example unit test

The following is a minimal example of a selenium unit test using the testing framework.
More complicated examples can be found by examining the existing tests present
in the source.

hello/index.html:

<div id="div-node"></div>





hello/index.css:

#div-node {
    text-align: center;
}





hello/index.js:

window.startTest = function (done) {
    $("#div-node").text("Hello, World!");
    done();
};





hello/testHelloWorld.py:

# Importing setupModule and tearDownModule will start up and
# shut down the web server automatically.
from selenium_test import FirefoxTest, setupModule, tearDownModule

# This test will run on firefox only.
class HelloWorld(FirefoxTest):
    testCase = ('hello', 'world')

    def test_main(self):
        # Resize the window to have consistent results.
        self.resizeWindow(640, 480)

        # Load the main html for this test directory.
        self.loadUrl('hello/index.html')

        # Wait for it to be loaded.
        self.wait()

        # Now we are ready to test the page.
        # The base class provide easy methods to test a screen shot.
        # This will take a screen shot and compare it against any
        # screenshots in the test image store at revision number 1.
        # Any failure here will raise an exception that will mark the
        # test as failed.
        self.screenshotTest('helloWorldScreenshot', revision=1)








Uploading screenshots to the image store

A script is provided in the source to help developers upload
images to the data store in a way that they can be loaded automatically
by the testing infrastructure.  The script is built into test/upload_test_cases.py
when selenium testing is enabled in CMake.  When creating a new test
(or updating a revision), the following is the recommended method for uploading
test data for the example test hello/ described above.

# inside the build directory
python test/upload_test_cases.py ../testing/test-cases/selenium-tests/hello





The script will run all the tests in this directory and prompt you if you want to upload a new image
in the event that a screenshot test has failed.  If you intend to start a new
revision, then the revision number should be changed in the unit test source
before running this script.  Note: you must have write permission in the MIDAS
GeoJS community before you can upload new images.  Contact a community administrator
for an invitation.






Code coverage

Code coverage information is generated automatically for all headless unit tests
by Karma’s test runner when running npm run test.  The coverage information is
submitted to codecov [https://codecov.io/github/OpenGeoscience/geojs] and
cdash [http://my.cdash.org/index.php?project=geojs] after every
successful Travis run.







          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Testing infrastructure
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            
  
Testing infrastructure



	selenium_test

	midas_handler

	upload_test_cases









          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    selenium_test
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 

          	Testing infrastructure 
 
      

    


    
      
          
            
  
selenium_test


	
class selenium_test.BaseTest(methodName='runTest')

	Bases: unittest.case.TestCase

Base class for all selenium based tests.  This class
contains several attributes that are configured by cmake
to give the test cases information about the build environment.
The class attributes representing paths should not be modified
by derived classes in general unless noted in the docstrings.

The testing framework is intended to be organized as follows:


	Each testing subdirectory contains one or more test classes derived from this class.
Test classes each have a class attribute BaseTest.testCase
that should be a tuple of strings.

	Each test class contains one or more test functions that are run independently.

	Each test function contains one or more unit tests that are referred to in the
arguments list as testName.



The tests are discovered and executed using python’s
unittest [https://docs.python.org/2/library/unittest.html]
module on the commandline by executing:

python -m unittest discover





Paths to test specific resources such as base line images are
computed as follows:


	Test web page

DEPLOY_PATH/test/selenium/testDirectory/index.html







	Test case image store path

DEPLOY_PATH/test/selenium/testDirectory/testCase[0]/testCase[1]/.../







	Unit test screenshots

DEPLOY_PATH/test/selenium/testDirectory/testCase[0]/testCase[1]/.../testName.png







	MIDAS image store

MIDAS_COMMUNITY/Testing/test/selenium/testDirectory/testCase[0]/testCase[1]/.../testName.png





Where each MIDAS item contains multiple revisions and bitstreams to account for changes in
the code and differences between platforms.



	Unit test screenshot comparisons for debugging

DEPLOY_PATH/test/selenium/testDirectory/testCase[0]/testCase[1]/.../testName_test.png
DEPLOY_PATH/test/selenium/testDirectory/testCase[0]/testCase[1]/.../testName_base_NN.png
DEPLOY_PATH/test/selenium/testDirectory/testCase[0]/testCase[1]/.../testName_diff_NN.png










	
build_path = '@CMAKE_CURRENT_BINARY_DIR@'

	The absolute path to the build root.






	
click(element, offset=(0, 0))

	Click on a element given (by a CSS selector) at offset
relative to the center of the element.





	Parameters:	
	element (string) – A CSS selector

	offset ([x, y]) – The offset from the element center









For example,

>>> test.click('button.test-button')










	
classmethod compareImages(baseImage, testImage, testName, iImage=0)

	Compute the difference between two images and throw a
ImageDifferenceException if the difference is above
imageDifferenceThreshold.  If the two images are
different sizes, this function will always raise.





	Parameters:	
	baseImage (Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]) – The base line image.

	testImage (Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]) – The image generated by a screenshot.

	testName (string) – The name of the test.

	iImage (int) – A number used to generate unique file names when doing multiple comparisons per test.






	Raises:	ImageDifferenceException – If the images are different.












	
deploy_path = '@GEOJS_DEPLOY_DIR@'

	The absolute path to the webserver root.






	
drag(element, delta, offset=(0, 0), ctrlDown=False)

	Drag the element given (by a CSS selector) starting
at offset relative to the center of the element by
an amount delta.





	Parameters:	
	element (string) – A CSS selector.

	delta ([x, y]) – The number of pixels to drag in x and y.

	offset ([x, y]) – The offset from the element center to start the drag.

	ctrlDown – if True, hold down control key during the drag.









For example,

>>> test.drag('#map', (100, -10), (-50, 0))





performs a mousedown on #map 50 pixels to the left of its center,
drags right 100 pixels and up 10 pixels, and then performs a mouseup.






	
driverName = 'null'

	String representing the selenium driver to be used.
Currently supports ‘firefox’ and ‘chrome’






	
classmethod exportTestImage(img, testName, kind='', deploy='')

	Save an image to the local image store path.  This is an internal
method providing a unified method for saving image outputs from
tests for debugging test failures.





	Parameters:	
	img (Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]) – The image object to save.

	testName (string) – The name of the test.

	kind (string) – (optional) Additional string to added to the file name distinguishing multiple images.

	deploy (string) – (optional) Root path for the local image store.






	Returns:	The full path of the saved image.




	Return type:	string












	
getElement(selector)

	Find an element on the page by a CSS selector. For example,

>>> node = test.getElement('#my-div')









	Parameters:	selector (string) – A CSS selector.


	Return type:	WebElement [http://selenium-python.readthedocs.org/en/latest/api.html#selenium.webdriver.remote.webelement.WebElement]










	
getElements(selector)

	Find all elements on the page matching a css selector.

>>> divs = test.getElements('div')









	Parameters:	selector (string) – A CSS selector.


	Return type:	List of WebElement [http://selenium-python.readthedocs.org/en/latest/api.html#selenium.webdriver.remote.webelement.WebElement]










	
hover(element, offset=(0, 0))

	Move the mouse pointer over the given element and offset.





	Parameters:	
	element (string) – A CSS selector.

	offset ([x, y]) – The offset from the element center














	
imageDifferenceThreshold = 2.0

	The maximum allowable image difference between screenshots
and baseline images.  The difference is calculated as the
RMS average difference between pixel values in the RGB
channels.  This should be a number between
0 and 255, with 0 meaning a perfect match.






	
classmethod loadImageFile(filename, relative=True)

	Load an image from a local file.  If relative is True, then
load it relative the current testing directory, otherwise
assume an absolute path.





	Parameters:	
	filename (string) – The file path of the image.

	relative (bool) – Whether to treat the filename as a relative or absolute path.






	Return type:	Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]












	
classmethod loadImageURL(filename, relative=True)

	Load an image from a URL.  If relative is True, then
load it relative the current testing path, otherwise
assume an absolute URL.





	Parameters:	
	filename (string) – The file path of the image.

	relative (bool) – Whether to treat the filename as a relative or absolute path.






	Return type:	Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]




	Raises:	Exception – if the image could not be loaded












	
classmethod loadTestImages(testName, revision=None)

	Load all images from the globally configured MIDAS image store.  The
images are used for matching a screenshot for the current test.
Multiple images are possible to account for differences on
multiple platforms.  If no revision is provided, then the
class attribute testRevision is used.





	Parameters:	
	testName (string) – The name of the current test.

	revision (int) – The revision number to load.






	Return type:	List of Images [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image].












	
loadURL(url, relative=True)

	Load a URL path on the test server.





	Parameters:	
	url (string) – The path to the page go load.

	relative (bool) – Whether or not to prefix with the current test path.









For example,

>>> test.loadURL('index.html')





will load http://localhost:30100/index.html, and

>>> test.loadURL('/index.html', False)





will load http://localhost:30100/path/to/test/index.html
using the currently configured test path.






	
midas = <midas_handler.MidasHandler object>

	A midas_handler.MidasHandler object providing methods for downloading and
uploading data to the
geojs MIDAS community [https://midas3.kitware.com/midas/community/40].






	
midasPath = ('Testing', 'test', 'selenium')

	A tuple representing the relative path to test data relative to the
geojs MIDAS community [https://midas3.kitware.com/midas/community/40].






	
resizeWindow(width, height)

	Resize the browser to the given width and height.





	Parameters:	
	width (int) – The width of the view in pixels.

	height (in) – The height of the view in pixels.














	
runScript(script)

	Run a javascript script in the browser.  Scripts that execute
asynchronously should set a global variable when finished
so that a BaseTest.wait() call can be made to block
for it to finish, as follows:

>>> script = 'window.setTimeout(function () { window.finished = true; })'
>>> test.runScript(script)
>>> test.wait('window.finished')









	Parameters:	script (string) – The script content to run.










	
screenshot()

	Capture a screenshot of the current viewport.





	Return type:	Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image]










	
screenshotTest(testName, revision=None)

	Convenience method for taking a screenshot and comparing
to stored images.  Throws an exception if the images differ
by more than imageDifferenceThreshold.  This method
also exports the images and differences under the deploy path
for debugging failed tests.  If no revision is provided, then the
class attribute testRevision is used.





	Parameters:	
	testName (string) – The name of the test.

	revision (int) – The revision number to compare against.






	Raises:	ImageDifferenceException – If the images are different.












	
setUp()

	Start up a selenium driver.






	
source_path = '@CMAKE_CURRENT_SOURCE_DIR@'

	The absolute path to the source root.






	
srcTestPath = ('testing', 'test-cases', 'selenium-tests')

	A tuple representing the path to the selenium test
sources relative to source_path.






	
classmethod startServer()

	Start a local web server. (depreciated)






	
classmethod stopServer()

	Stop the local webserver. (depreciated)






	
tearDown()

	Stop the selenium driver and calls the coverage handler
if enabled.






	
testBaseURL = 'http://@TESTING_HOST@:@TESTING_PORT@'

	The root URL of the test webserver.






	
testCase = ()

	A tuple representing the path to a specific test case.
This value should be set by all derived classes.  The
path is used to determine both the image store path
on MIDAS server and the local image output path.






	
testHost = '@TESTING_HOST@'

	The address of the webserver hosting the test content
configured by cmake.






	
testPath = ('test', 'selenium')

	A tuple giving the selenium test root relative to both
testBaseURL and deploy_path.






	
testPort = '@TESTING_PORT@'

	The port of the webserver hosting the test content
configured by cmake.






	
testRevision = 1

	The revision number of the test.  This value should be set by
all derived classes and incremented
whenever there are changes to either the test case or the geojs
source resulting in an expected change in screenshots.  After
incrementing this value, new baseline images must be uploaded
to the MIDAS server.






	
wait(variable='window.testComplete', function=None, timeout=30)

	Wait for a variable to be set to true, or a function to return true.
Raise an error if timeout is exceeded.





	Parameters:	
	variable (string) – The variable to query.

	function (string) – The function to execute.

	timeout (float) – The maximum number of seconds to wait.


















	
class selenium_test.ChromeTest(methodName='runTest')

	Bases: selenium_test.BaseTest

Chrome test base class.  Uses the Chrome selenium driver.  May
be extended in the future to handle Chrome specific customizations.
All tests derived from here are disabled by default because they
require special drivers to be installed.
Setting the environment variable CHROME_TESTS to ON will
enable them.






	
class selenium_test.FirefoxTest(methodName='runTest')

	Bases: selenium_test.BaseTest

Firefox test base class.  Uses the Firefox selenium driver.  May
be extended in the future to handle Firefox specific customizations.
Setting the environment variable FIREFOX_TESTS to OFF will
turn off all tests derived from here.






	
exception selenium_test.ImageDifferenceException(**kw)

	Bases: exceptions.BaseException

Exception to be raised when two images differ.
Stores extra information that can be captured to handle uploading
failed tests.






	
class selenium_test.NullDriver

	Bases: object

A placeholder for selenium drivers that does nothing.






	
exception selenium_test.ThresholdException(**kw)

	Bases: exceptions.BaseException

Exception to be raised when a test doesn’t meet a threshold value.






	
selenium_test.makeAllBrowserTest(cls, baseName=None, **kw)

	Instrument a test class to run in all currently enabled browsers.
Takes in a class that will be used to generate browser specific
classes using class mixins.  This is a convience function for the
case when a test doesn’t need any special handling for different
browsers.  Extra keyword arguments are appended as class level
variables.





	Parameters:	
	cls (class) – The base test class

	baseName (str) – Override cls.__name__ to construct generated class names









For example,

class MyTest(object):
    def test_example(self):
        pass  # Do test here

makeAllBrowserTest(MyTest, aparam=1)










	
selenium_test.setUpModule()

	A module wide set up method that starts the test web server.
Unless there is a reason to override the default behavior in
your test, you should import this function into your test module.






	
selenium_test.tearDownModule()

	A module wide tear down method that stops the test web server.
Unless there is a reason to override the default behavior in
your test, you should import this function into your test module.









          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    midas_handler
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	geojs 0.10.5 documentation 

          	Testing infrastructure 
 
      

    


    
      
          
            
  
midas_handler


	
class midas_handler.MidasHandler(MIDAS_BASE_URL='https://midas3.kitware.com/midas', MIDAS_COMMUNITY='geojs')

	Bases: object

Contains several utility function for interacting with
MIDAS by wrapping api methods and caching the results.


	
community()

	Get the id of the GeoJS community.

>>> midas.community()
{
    u'admingroup_id': u'121',
    u'can_join': u'1',
    u'community_id': u'40',
    u'creation': u'2014-06-02 11:38:38',
    u'description': u'',
    u'folder_id': u'11361',
    u'membergroup_id': u'123',
    u'moderatorgroup_id': u'122',
    u'name': u'GeoJS',
    u'privacy': u'0',
    u'uuid': u'538c9a7ead4a21c3b3e4e52724b3e6949487279edfad3',
    u'view': u'68'
}









	Returns:	MIDAS response object.


	Return type:	dict










	
getFolder(name, root=None)

	Get a folder named name under root.  If no root
is given, use the community root.

>>> midas.getFolder('Testing')
u'11364'
>>> midas.getFolder('data', '11364')
u'11373'









	Parameters:	
	name (string) – The folder name to find.

	root (string) – The id of the root folder.






	Returns:	The id of the folder.




	Return type:	string




	Raises:	Exception – If the folder is not found.












	
getImages(path, revision)

	Download images in an item at the given path and revision.

>>> .getImages(('Testing', 'test', 'selenium', 'osmLayer', 'firefox', 'osmDraw.png'), 2)
[<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=640x390 at 0x1019E9200>]









	Parameters:	
	path (tuple) – The relative path from the community root.

	revision (int) – The item revision to download.






	Returns:	List of Image [http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image].




	Raises:	Exception – If the path or revision is not found.












	
getItem(path, root=None)

	Get an item at the given path.  If no root is specified, use the
community root.

>>> midas.getItem(('Testing', 'data', 'cities.csv'))
{
    u'date_creation': u'2014-06-02 15:26:12',
    ...
    u'view': u'2'
}









	Parameters:	
	path (tuple) – The relative path from root.

	root (string) – The id of the root folder.






	Returns:	MIDAS response object




	Return type:	dict




	Raises:	Exception – If the item is not found.












	
getOrCreateItem(path)

	Create an empty item at the given path if none exists
otherwise return the item.  This
method will create folders as necessary while traversing
the path.





	Parameters:	path (tuple) – The relative path from the community root.


	Returns:	MIDAS response object


	Return type:	dict










	
login(email=None, password=None, apiKey=None)

	Log into midas and return a token.  If email or password
are not provided, they must be entered in stdin.  The token
is cached internally, so the user will only be prompted
once after a successful login.  Alternatively, an apiKey
can be provided as login credentials.





	Parameters:	
	email (string) – The user’s email address.

	password (string) – The user’s password.

	apiKey (string) – The user’s api key.






	Return type:	string




	Returns:	The login token.












	
uploadFile(fileData, path, revision=None)

	Uploads a file to the midas server to the given path.
If revision is not specified, it will create a new revision.
Otherwise, append the file to the given revision number.





	Parameters:	
	fileData (string) – The raw file contents to upload.

	path (tuple) – The relative path to the item.

	revision (int) – The revision number to append the file to.






	Raises:	Exception – If the upload fails for any reason.




	Returns:	MIDAS response object




	Return type:	dict



















          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    upload_test_cases
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	geojs 0.10.5 documentation 

          	Testing infrastructure 
 
      

    


    
      
          
            
  
upload_test_cases

This python module is a script that helps to generate test images
and upload them to the midas data store.  It is dependent on a
the specific structure of the unit tests.  It can be improved
in the future by using the testtools module and providing a
custom exception handler.


	
upload_test_cases.exceptionHandler(func)

	Decorator function to catch ImageDifferenceExceptions
and prompt the user to upload test images to the midas
data store.  Catch all other exceptions and warn the
user.






	
upload_test_cases.findTests(path)

	Find all the tests in the selenium tests path
and return an interable.






	
upload_test_cases.iterate_tests(test_suite_or_case)

	Iterate through all of the test cases in ‘test_suite_or_case’.









          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Python Module Index
    
    

    

 


  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   s | 
   u
   


   
     			

     		
       s	

     
       	
       	
       selenium_test	
       

     			

     		
       u	

     
       	
       	
       upload_test_cases	
       

   



          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  

  
    
    
    Index
    
    

    
 
  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	geojs 0.10.5 documentation 
 
      

    


    
      
          
            

Index



 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | W
 


B


  	
      
  	BaseTest (class in selenium_test)
  


  

  	
      
  	build_path (selenium_test.BaseTest attribute)
  


  





C


  	
      
  	ChromeTest (class in selenium_test)
  


      
  	click() (selenium_test.BaseTest method)
  


  

  	
      
  	community() (midas_handler.MidasHandler method)
  


      
  	compareImages() (selenium_test.BaseTest class method)
  


  





D


  	
      
  	deploy_path (selenium_test.BaseTest attribute)
  


      
  	drag() (selenium_test.BaseTest method)
  


  

  	
      
  	driverName (selenium_test.BaseTest attribute)
  


  





E


  	
      
  	exceptionHandler() (in module upload_test_cases)
  


  

  	
      
  	exportTestImage() (selenium_test.BaseTest class method)
  


  





F


  	
      
  	findTests() (in module upload_test_cases)
  


  

  	
      
  	FirefoxTest (class in selenium_test)
  


  





G


  	
      
  	getElement() (selenium_test.BaseTest method)
  


      
  	getElements() (selenium_test.BaseTest method)
  


      
  	getFolder() (midas_handler.MidasHandler method)
  


  

  	
      
  	getImages() (midas_handler.MidasHandler method)
  


      
  	getItem() (midas_handler.MidasHandler method)
  


      
  	getOrCreateItem() (midas_handler.MidasHandler method)
  


  





H


  	
      
  	hover() (selenium_test.BaseTest method)
  


  





I


  	
      
  	ImageDifferenceException
  


      
  	imageDifferenceThreshold (selenium_test.BaseTest attribute)
  


  

  	
      
  	iterate_tests() (in module upload_test_cases)
  


  





L


  	
      
  	loadImageFile() (selenium_test.BaseTest class method)
  


      
  	loadImageURL() (selenium_test.BaseTest class method)
  


      
  	loadTestImages() (selenium_test.BaseTest class method)
  


  

  	
      
  	loadURL() (selenium_test.BaseTest method)
  


      
  	login() (midas_handler.MidasHandler method)
  


  





M


  	
      
  	makeAllBrowserTest() (in module selenium_test)
  


      
  	midas (selenium_test.BaseTest attribute)
  


  

  	
      
  	MidasHandler (class in midas_handler)
  


      
  	midasPath (selenium_test.BaseTest attribute)
  


  





N


  	
      
  	NullDriver (class in selenium_test)
  


  





R


  	
      
  	resizeWindow() (selenium_test.BaseTest method)
  


  

  	
      
  	runScript() (selenium_test.BaseTest method)
  


  





S


  	
      
  	screenshot() (selenium_test.BaseTest method)
  


      
  	screenshotTest() (selenium_test.BaseTest method)
  


      
  	selenium_test (module)
  


      
  	setUp() (selenium_test.BaseTest method)
  


      
  	setUpModule() (in module selenium_test)
  


  

  	
      
  	source_path (selenium_test.BaseTest attribute)
  


      
  	srcTestPath (selenium_test.BaseTest attribute)
  


      
  	startServer() (selenium_test.BaseTest class method)
  


      
  	stopServer() (selenium_test.BaseTest class method)
  


  





T


  	
      
  	tearDown() (selenium_test.BaseTest method)
  


      
  	tearDownModule() (in module selenium_test)
  


      
  	testBaseURL (selenium_test.BaseTest attribute)
  


      
  	testCase (selenium_test.BaseTest attribute)
  


      
  	testHost (selenium_test.BaseTest attribute)
  


  

  	
      
  	testPath (selenium_test.BaseTest attribute)
  


      
  	testPort (selenium_test.BaseTest attribute)
  


      
  	testRevision (selenium_test.BaseTest attribute)
  


      
  	ThresholdException
  


  





U


  	
      
  	upload_test_cases (module)
  


  

  	
      
  	uploadFile() (midas_handler.MidasHandler method)
  


  





W


  	
      
  	wait() (selenium_test.BaseTest method)
  


  







          

      

      

    


    
         Copyright 2014, Kitware, Inc..
      Created using Sphinx 1.3.5.
    

  
_static/comment-close.png





_images/osmmap.png





_static/down-pressed.png





_static/up.png





_static/minus.png





_static/ajax-loader.gif





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		geojs 0.10.5 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


      